It is implied that everything here should work on the master branch unless otherwise stated.
Something that we are developing in our own branch but not ready for merging should be pink.

Style guide: Use every time it appears.

Other Important docs:
- Making a New Demo Launch file
- Big Finite State Machine

- ROS_Diagram

Preparation

This is to be done by the robot’s owner.

Hardware:
- Bring the box with all contents given to you, including the pieces that you seldom use
(e.g. the charger).
- On the short side of the box there is your name, and the name of the robot.
- The robot name is visible on the robot.
duckiebot$ sudo pip install graphviz
Software:

duckiebot$ sudo apt-get install python-sklearn

Hardware checklist

- There is a name on the robot
- There are two names on the box (owner/robot)
- Put the robot on the box.
- Put joystick on the box.
- The joystick switch should be on X.
- There is no cap on the camera. If so, remove and put in the box.
- Robot is charging through the charger
- Check battery level: if less < 3: not ready

- (if taking logs) USB Thumb drive plugged in. (not important for April 15)

http://drive.google.com/open?id=1Q7pMHl5R7n5Q2nfJCiSVJVhT9gtochJe1YCOpy89bJQ
http://drive.google.com/open?id=1nBXbo0r6-rdlOiWcPz-sHcSsk8FnPJeOXHF5bm6If5E
https://drive.google.com/open?id=0B9YU76UT5h3FUDhPblZ4bnBHRTQ

There is no wifi stick.

The Pi is powered directly from the battery on one port;

The Buffalo and the motor use the splitter. The Buffalo is unplugged (both power and
ethernet)

Make sure that the light can turn on on the joystick by clicking the green button. Or
pressing “vibration”.

The LSD hat (the purple LED board) is present

LEDs mounted below the top deck (the wires go through the top deck not around) and
are out of view of the camera.

The battery is tightly held with the zip tie.

Duckie somewhere.

The camera is not loose

The wires are neatly tied at the back

Short usb-barrel connector

Flexible short ethernet connector

The total height of everything mounted is less than 6.75 inches.

The maximum width anywhere is 6 inches.

The LEDs are individually taped to the connectors

The LEDs are all white

Software Checklist

<

o o oo

Laptop connected to wireless MIT
Laptop connected to router via ethernet
Robot connected to router via ethernet
You should be able to
o ping Jlocal
Make sure that ethernet connection is automatic DHCP
Open up one terminal for the robotc
laptop $ ssh ubuntu@ .local
It should NOT ask you for a password (TODO add link to fix this)
It should not automatically start byobu.
duckiebot $ byobu
duckiebot $ ping google.com
duckiebot $ cd ~/duckietown
Duckiebot $ sudo ntpdate -s time.nist.gov
U Eventually (when master is updated):
E duckiebot $ make fix-time2

r duckiebot $ git checkout master
o Note: this will become “git checkout openhouse-dp?” eventually.
r duckiebot $ git pull
r duckiebot $ source set_vehicle_name.sh
r duckiebot $ make catkin-clean
r duckiebot $ make build
¢ duckiebot $ make unittests-environment
o (make unittests requires to have the data in DUCKIETOWN_DATA)
& duckiebot $ make \]egEbggkl a[cH Ye]jY

U Test robot moves
U Test image on laptop
r duckiebot $ make test-led
U You should see the regular pattern (red, green green, blue blue
blue, then everyone different.)

Logging
Mount thumb drive:

sudo mkdir -p /mnt/logs
sudo mount -o umask=000 /dev/sdal /mnt/logs

Try you can write using:

touch /mnt/logs/test writing

Take a log
Take a log using:
rosbag record -a --split --duration=120 -0 /mnt/logs/

where is what is told you by the director.-

Testing checklist

T-basic: Checking that the software is installed correctly

Run:
duckiebot$ make unittests-environment

T-joy: Checking that joystick and actuators work

Requires: Setup step 2.0
Does not require: successful network config / linux laptop

(already part of the “software checklist” above)

On master branch
duckiebot$ make demo-joystick

Push the left joystick forward, the vehicle should move forward.
Push the right joystick right, the vehicle should turn right.

(Check that the joystick is on “X”. Note that sometimes the joystick malfunctions; remove battery
and try again.)

T-joy-cam: Checking that joystick and camera works
(This is the one for data collection.)
(already in the software checklist)

On master branch
duckiebot$ make demo-joystick-camera

T-cam-calib: Checking that camera calibration is okay

Requires: Setup step 2.2.2 complete

Put your duckiebot as shown below:

-

Note that the axis of the wheels is aligned with the y-axis and camera is looking toward x-axis.
Then run the following:

dYhl gh 0 roslaunch duckietown test_camcalib.launch veh:=%{VEHICLE NAME}

If it passes the test, your camera calibration (both intrinsic and extrinsic) is fine. If it fails, please
do the camera calibration again as shown in Setup 2.2.2.

Wheels Calibration Tests

Trim/Gain

How to test:
1) Set your vehicle in the standardized calibration lane, within the black/blue (NOT
WHITE/GOLD") taped U. If you run the test, it should reach the black/blue taped line at
the end of the lane. See the photos below for the setup:

! https://en.wikipedia.org/wiki/The dress_(viral_phenomenon)

https://docs.google.com/document/d/1cCLnIvC7R2RmsS8phw1eaFWc6_HoWVd9p8tSMsVrWNQ/edit#
https://en.wikipedia.org/wiki/The_dress_(viral_phenomenon)

Mat specs (3x1 runway shape):
Red line as close to the edge without crossing the interlocking bits
Blue/Black line 8 cm from red line and parallel to it.
White lines on the edge without intersecting the interlocking bits
Yellow line in the middle of the white lines
Blue/black start position is ~3-4 cm from the edge (not including the interlocking

a) (Or equivalent) You will need two terminals for this since one
command will launch all the necessary nodes + joystick, and the
other command will run the test.

3) duckiebot $ roslaunch duckietown indefinite_nav_calibration.launch
veh:=

Note: if there is no kinematics yaml file for your robot, you will see the following warnings, which are
expected:

[WARN] ... [/<robot>/inverse_kinematics_node]
/home/ubuntu/duckietown/catkin_ws/src/duckietown/config/baseline/calibration/kinematics/<robot
>.yaml does not exist. Using default.yaml.

[WARN] ... [/<robot>/forward_kinematics_node]
/home/ubuntu/duckietown/catkin_ws/src/duckietown/config/baseline/calibration/kinematics/<robot
>.yaml does not exist. Using default.yaml.

4) duckiebot $ rosrun indefinite_navigation test_straight_line.py veh:=
a) NOTE: This should be run simultaneously with all the nodes
launched by the previous command. AKA if you run byobu before

you ran command 2), you can open a new window and run this on
your robot as well.
To change trim/etc values:
If your robot veers right in the lane, increase trim value.
If your robot veers left, decrease trim.
If you want to set a trim, where TRIM_VALUE is roughly between -0.1 and 0.1:

duckiebot $ rosservice call / /inverse_kinematics_node/set_trim --
TRIM_VALUE
For gain:

duckiebot $ rosservice call / /inverse_kinematics_node/set_gain
GAIN_VALUE

Once satisfied with results:
duckiebot $ rosservice call
/ /inverse_kinematics_node/save_calibration

Note the “--” which allows negative values of TRIM_VALUE.
The results are saved into a file in
${DUCKIETOWN_ROOT}/catkin_ws/src/duckietown/config/baseline/calibration/kin
ematics/ .yaml
- You should push the new/updated calibration file to master

TURNS

Use the standardized intersection that has start spots marked in tape, like the mats for the
gain/trim test.
1 command on master:
1) duckiebot $ rostest indefinite_navigation calibrate_turn.test
veh:= type:={right, left, forward}
Where “right”, “left”, “forward” tell which type of turn to test.
2) You can also use the make commands “make test-turn-left”, “make
test-turn-right” and “make test-turn-forward”

Joystick Buttons Guide

A - coordination signal A
B - coordination signal B
X - no lights
Y - coordination signal C / anti_instagram (ON/OFF) in LANE_FOLLOWING
start - transitions the robot from any state to JOYSTICK_CONTROL
back - transitions the robot from JOYSTICK_CONTROL to LANE_FOLLOWING
Logitech - “E-STOP” cuts power to the wheels (MODE does not change)
On master:
RB - transitions the robot into PARALLEL _AUTONOMY mode
LB - transitions the robot out of PARALLEL_AUTONOMY mode
On so1-devel:
RB - (de)activate verbose mode for line detector
LB - transitions the robot in and out of PARALLEL_AUTONOMY mode
Button stick left - start obstacle avoidance lane following
Button stick right

Demos instructions

Starting procedure for every demo:

e New anti_instagram procedure to learn:

e Place your robot on the line_detection/anti-instagram calibration tile.

e Runthe command:$ make demo-lane_following-default

e Press RB to activate verbose mode for the line detector.

e On your laptop run
$ source set_ros_master.sh

e On your laptop then open:se
$ rqt_image view

e Subscribe to / /line_detector_node/image_with_lines (top left
drop down menu)

e Observe the performance of line detector.

e Press Y to start the anti instragram node.

e You should see after a couple of seconds the image being color-corrected and
the line detections improved.

DPO Lane Following

Following the starting procedure:
Move the robot onto the lane
Push the start button on the robot

DP1

Run from branch: master
TODO: eventually run from dp1-master

Run the following command:
$ make openhouse-dpl

The duckiebot starts in joystick mode. Set to parallel autonomy mode by hitting the RB button.
Remove from parallel autonomy mode by hitting the LB button.

Debugging common problems

(IF YOU FIND A PROBLEM - PLEASE ADD TO LEFT HAND SIDE AND TAG PEOPLE TO
FIX):

Observed behavior Cause of the problem Solution
Oscillation while stopped Controller is tuned for a Options:
specific velocity (see 1)
controller notes from Steven | 2)
Chen) 3)

Multiple stops at stop lines

Stops at stop lines in
opposite lanes

DP2

Run from branch: master

$make—openhouse-dp2

Launch each detector separately:
$ make openhouse-dp2-vehicle
$ make openhouse-dp2-obstacle

Starts in JOYSTICK_CONTROL mode. Push the LEFT JOYSTICK on the joystick to start the
demo.

You should see the robot start to follow the lane. If there are robots in the way it will stop. If
there are obstacles detected it will stop (depending on which demo you are running)

Debugging common problems

(IF YOU FIND A PROBLEM - PLEASE ADD TO LEFT HAND SIDE AND TAG PEOPLE TO
FIX):

Observed behavior

Cause of the problem

Solution

After pressing start button,
robot moves and then quickly
stops even though there are
no obstacles or cars

It is likely that the obstacle
detection module is
producing false positives

Step 1) confirm the suspicion
by:

rostopic echo

/ /fsm_no
de/mode

If we are in
AVOID_OBSTACLE mode
then the suspicion is
confirmed

The robot continues to drive
and cannot be stopped by
the e-stop

No commands are being sent
to the motors at all. The last
one sent is being applied
continuously

This is a bug and should
never happen. Please post in
#dp2-indef_nav on slack

You stop at a stop line

Two options: 1) the red line
was detected as a obstacle in
which case this is duplicate
of row 1. 2) the
stop_line_filter caused the
stop.

a) The
stop_line_filter _node
should not be
running.

b) There will be no stop
lines in the
duckietown for this
demo

DP3

Run from branch: master

Run the following command:
$ make openhouse-dp3

Wait for everything to finish launching.

Place the robot in a lane.

Push the “start” button on the joystick.
You should observe that the robot starts to follow the lane.

Debugging common problems
(IF YOU FIND A PROBLEM - PLEASE ADD TO LEFT HAND SIDE AND TAG PEOPLE TO

FIX):

Observed behavior

Cause of problem

Solution

The robot runs very off center
in the lane

Your wheel trim is most likely
not very good

Run the trim/gain tests

The robot does not stop at
the stop line but continues to
follow a lane afterwards

The stop line was not
detected.

Suggest to hit the e-stop
(Logiteck button) and pick up
the robot and place in front of
the stop line and look at the
output of the line detector.

Robot crashes when going
through intersection

Run the trim/gain/and turn
tests

The robot continues to drive
and cannot be stopped by
the e-stop

No commands are being sent
to the motors at all. The last
one sent is being applied
continuously

This is a bug and should
never happen. Please post in
#dp3-indef_nav on slack

SO1 variants

These are special testing instructions to run dp3 with different line detectors.

Run from branch: master (?)

variant config

Command (make X)

Evaluation (environment: your
name: comments)

Line detector 1 with | default.yaml make openhouse-dp3-1ldla
early April
parameters

Line detector 1 Guy.yaml make openhouse-dp3-1dilb
(+anti_instragram)

Line detector 1 universal.yaml make openhouse-dp3-1ldic
(+anti_instragram)

Line detector 2 Id2.yaml To change: make

(+ anti_instragram) openhouse-dp3-1d2a

Line detector 2 + |d2-universal.yaml To change make

anti_instragram openhouse-dp3-1d2b
DP4

Run from branch: ???

Run the following command:

duckiebot $ make openhouse-EEE dYhl ghA \njcalZgl o kmig Yhl E]I
afkl Ydd hqgl " gf EeYl hdgl daZ hql * gf Ef nehg hql * gf Ehad hql ~ gf Ek[ahq

DP5

Run from branch: ??7?

Run the following command:
$ make openhouse-EEE

dYhl ghA \njca] Zgl ® kmg Yhl E]I afkl Ydd hgl * gf EeVl hdgl daz
hql ~ gf Ef mehg hql * gf Ehad hql ~ gf Ek[ahq

DP6a

Run from branch: dp6-integration

Run the following command:

duckiebot $ make build
duckietop $ make build

duckietop $ roslaunch duckietown_demos localization_ free_drive.launch
veh:=<vehicle name>

Wait 10 seconds

On a second terminal:

duckietop $ roslaunch duckietown_ demos
localization_free_drive_2.launch veh:=<vehicle name>

To adjust the trim and gain:

rosservice call / /inverse_kinematics_node/set_trim -- 0.0
rosservice call / /inverse_kinematics_node/set_gain 1.0
Save with:
rosservice call / /inverse_kinematics_node/save_calibration
If you do this the first time, you will see how it creates a new .yaml|

file for your duckiebot in the folder:
duckietown/config/baseline/calibration/kinematics
which you can add and commit to the git repo.

Not Necessary but just in case you need to regenerate the map
roslaunch duckietown_description csv2xacro_node.launch tag_map_csv:=
tile_map_csv:= map_name:=

DP6b
Run from branch (laptop and duckiebot): dp6

duckiebot $ cd duckietown; make build
laptop $ cd duckietown; make build

Run the following commands:

duckiebot $ make openhouse-dp6
laptop $ make openhouse-dp6-laptop-<robot>

